Deval Shah

RESEARCH INTERESTS

Computer architecture, Autonomous robotics, Machine learning

EDUCATION

University of British Columbia	2018-2023 (expected)
Ph.D. candidate (Department of Electrical and Computer Engineering)	(<u>-</u>)
Supervisor: Tor M. Aamodt	
Research: Energy-Efficient Acceleration for Autonomous Robotics	
Awards: Four Year Doctoral Fellowship (4YF), UBC Presidential Excellence Award	
Indian Institute of Technology, Bombay	2014-2017
Master of Technology (Department of Electrical Engineering)	(CGPA: 9.98/10)
Specialization: Microelectronics and VLSI Engineering	
Thesis: Lightweight Forth Programmable NoCs	
Awards: Best Master Thesis, Silver medal for 1st rank in the department	
Maharaja Sayajirao University of Baroda, India	2010-2014
Bachelor of Engineering (Department of Electrical Engineering)	(GPA: 4/4)
Specialization: Electronics and Instrumentation	
Project: Design and implementation of automated inventory management system	
Awards: 1st rank in the Faculty of Technology among 1100 students	

WORK EXPERIENCE

Qualcomm India Pvt. Ltd., Bangalore

Engineer, Design Technology and Methodology

- Worked on timing closure methodologies, clock convergence, and Power Performance Area (PPA) optimization.
- Built wrappers in Tcl/Tk around different tools such as Synopsis Primetime, Design Compiler, and Tweaker to develop a customized flow for engineering change order (ECO) convergence.
- Awarded QualStar for outstanding contributions to design analysis for timing closure.

RESEARCH PROJECTS

• Hardware accelerator design to enable real-time motion planning for robotic manipulators with algorithmhardware co-optimization of learning-based motion planning approaches. Built microarchitecture simulator and Verilog model for the proposed accelerator. (ISCA 2023)

• Binary-encoded labels for deep regression networks. Studied the design space of binary-encoded labels for regression tasks to demonstrate its potential using manually designed encoding functions and motivate problem-specific exploration of the design space. The second phase of the project focused on automatically learning binary-encoded labels for a given problem. Evaluated the proposed approach on complex regression tasks, including headpose estimation, facial landmark detection, age estimation, and autonomous driving. (ICLR 2022 Spotlight, ICLR 2023 Spotlight)

• Characterizing and improving the **soft-error resilience** of **motion planning accelerators** for **autonomous robots**. Proposed a reliability metric for motion planning accelerators to facilitate faster **fault characterization** and cost-effective **error mitigation**. Developed microarchitecture simulators and Verilog models of four existing motion planning accelerators for evaluation. (TCPS 2023)

• An event-driven GPU execution model (EDGE) that enables non-CPU devices to directly launch preconfigured tasks on a GPU without CPU interaction. The proposed execution model improves GPU support for latency-sensitive fine-grained streaming tasks and multi-programming. Evaluated the proposed approach using Gem5-GPU, a CPU-GPU system simulator. (PACT 2019)

• Performance analysis of machine learning workloads using a detailed GPU simulator. The project focused on **cuDNN** and **Pytorch** support for **GPGPU-Sim**, a widely used GPU simulator, to enable performance analysis of machine learning workloads. (ISPASS 2018)

• Performance analysis of machine learning workloads on deep neural network (DNN) accelerators using a system simulator. Worked on integrating DNNSim with gem5. Implemented a software layer using NNAPI to communicate with a hardware simulator (e.g., DNNSim) integrated with gem5.

2017-2018

• ForthNoC, a configurable synthesizable NoC generator with programmable routers built around lightweight stack-based Forth cores. ForthNoC supports features such as adaptive routing, broadcast/multicast, and systolic array computing that can be implemented through programming the routers. (VLSID 2018)

• Design and analysis of **GPU-based circuit simulator** based on Modified Nodal Analysis. **CULA** library with CUDA programming was used for the implementation.

• Designed and **synthesized** architecture of 2-wide fetch, 6-stage pipelined **superscalar processor** for ARMv7 equivalent ISA using **VHDL** and **Altera Quartus**. Studied different designs of major blocks, including branch predictors, reservation stations, and load queues.

RESEARCH PAPERS

• <u>D. Shah</u>, Z. Y. Xue, K. Pattabiraman, T. M. Aamodt, Characterizing and Improving Resilience of Accelerators to Memory Errors in Autonomous Robots, ACM Transactions on Cyber-Physical Systems, **TCPS 2023**

• <u>D. Shah</u>, N. Yang, T. M. Aamodt, Energy-efficient Realtime Motion Planning, International Symposium on Computer Architecture, **ISCA 2023**

• <u>D. Shah</u>, T. M. Aamodt, Learning Label Encodings for Deep Regression, International Conference on Learning Representations, **ICLR 2023** (Selected for spotlight presentation)

• <u>D. Shah</u>, Z. Y. Xue, T. M. Aamodt, Label Encoding for Regression Networks, International Conference on Learning Representations, **ICLR 2022** (Selected for spotlight presentation)

• T. H. Hetherington, M. Lubeznov, <u>D. Shah</u>, T M. Aamodt, EDGE: Event-Driven GPU Execution, Parallel Architectures and Compilation Techniques, **PACT 2019**

• J. Lew, <u>D. Shah</u>, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla, C. Ng, N. Goli, M. D. Sinclair, T. G. Rogers, T. M. Aamodt, Analyzing Machine Learning Workloads Using a Detailed GPU Simulator, International Symposium on Performance Analysis of Systems and Software, **ISPASS 2018**

• V. B. Y. Kumar, <u>D. Shah</u>, M. Datar, S. Patkar, Lightweight Forth Programmable NoCs, International VLSI Design Embedded Systems conference, **VLSID 2018**

SCHOLASTIC ACHIEVEMENTS

• Awarded Four Year Fellowship during Ph.D. program.	2018-2022
• Conferred with Silver medal for securing 1st rank in Electrical department, IIT Bombay.	2017
• Awarded "Best Master's Thesis", Electrical Department, IIT Bombay.	2017
• Secured all-India rank 105 in General Aptitude Test in Engineering among 2,16,365 candidate	es. 2014
• Achieved 1st rank among 90,683 students in HSC exam conducted by Gujarat State Board.	2010

TECHNICAL SKILLS

Programming Languages & Libraries: Verilog, VHDL, C/C++, Python, CUDA, PyTorch, TensorFlow, Open Motion Planning Library, Flexible Collision Library, BASH, OpenMP, MPI, systemC, TCL/TK

Open-source Simulators: GPGPU-Sim, Gem5, Gem5-GPU, Klampt Robotic Simulator

Tools: Synopsis Primetime and Design Compiler, Altera Quartus, OpenAI Gym, ModelSim, Xilinx ISE, Vivado HLS, GDB, Intel VTune profiler, Ngspice

PROFESSIONAL EXPERIENCE

Indian Institute of Technology Bombay, India

System Administrator, Department of Electrical Engineering

- Maintained the department-wide email servers, storage servers, computing facilities, and network facilities.
- Built and maintained websites for the EE department and thesis database portal.

University of British Columbia

o Hardware Description Languages

Teaching Assistant, Department of Electrical and Computer Engineering

• Served as a teaching assistant for several courses, including Introduction to Microcomputers, Digital Systems Design, and Microcomputer Systems Design.

RELEVANT COURSES

- o Compute Accelerator Architectureso High Performance Scientific Computingo Computer Architectureo Advanced Topics in Computer Architecture
 - o VLSI Design
 - o Advanced Machine Learning
- o Machine Learning

2

2014-2017

2018-2022