Jinkwon Kim

School of Computing, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea coco@kaist.ac.kr +82-10-2754-9153 https://sites.google.com/view/jinkwonkim

RESEARCH INTERESTING	My primary interest lies in cross-layer optimizations for efficient compression-based systems. Due to the exponential growth of data utilized and generated by key workloads (e.g., scientific computing, machine learning, and graph analytics), compression-based systems have become indispensable in various hardware components. I have optimized several different compression-based systems through cross-layer optimizations (e.g., CPU ISA [<i>TC'20</i>], main memory [<i>HPCA'22</i>], DNN [<i>DATE'22</i> , <i>TC (under review)</i>], SSD [<i>TC'22</i>], and sparse tensor accelerator [<i>MICRO'23</i>]). Currently, I am researching to further enhance the hardware-based pseudo-tiling proposed in <i>MICRO'23</i> .		
EDUCATION	KAIST, Daejeon, South KoreaMar 2017 – Feb 2024 (expected)Integrated M.S./Ph.D Program, Computer ScienceAdvisor: Soontae KimGPA: 3.98 / 4.34.3		
	 Hanyang University, Seoul, South Korea Mar 2012 – Aug 2016 Bachelor, Double Majors in Industrial Engineering / Computer Science and Engineering GPA: 4.11 / 4.5 		
PUBLICATIONS	 Jinkwon Kim, Myeongjae Jang, Haejin Nam, and Soontae Kim, "HARP: Hardware-Based Pseudo-Tiling for Sparse Matrix Multiplication Accelerator", accepted in <i>IEEE/ACM International</i> <i>Symposium on Microarchitecture (MICRO)</i>, 2023. Myeongjae Jang, Jinkwon Kim, Haejin Nam, and Soontae Kim, "Zero and Narrow-width Value-aware Compression for Quantized Convolutional Neural Networks", accepted in <i>IEEE</i> <i>Transactions on Computers (TC)</i>. Mincheol Kang, Wonyoung Lee, Jinkwon Kim, and Soontae Kim, "PR-SSD: Maximizing Partial Read Potential by Exploiting Compression and Channel-Level Parallelism", <i>IEEE Transactions on</i> <i>Computers (TC)</i>, Vol.72, No.3, pp.772-785, May 2022. Myeongjae Jang, Jinkwon Kim, Jesung Kim, and Soontae Kim, "ENCORE Compression: Exploiting Narrow-width Values for Quantized Deep Neural Networks", <i>Design, Automation, and</i> <i>Test in Europe (DATE)</i>, Antwerp, Belgium, Mar 2022. Jinkwon Kim, Mincheol Kang, Jeongkyu Hong, and Soontae Kim, "Exploiting Inter-block Entropy to Enhance the Compressibility of Blocks with Diverse Data", <i>IEEE International Symposium on</i> <i>High-Performance Computer Architecture (HPCA)</i>, Seoul, South Korea, Apr 2022. Jinkwon Kim, Seokin Hong, Jeongkyu Hong, and Soontae Kim, "CID: Co-Architecting Instruction Cache and Decompression System for Embedded Systems", <i>IEEE Transactions on Computers (TC)</i>, Vol 70, No 7, pp. 1322, 1142, 1142, 1142, 1021 		
RESEARCH EXPERIENCE	 Hardware-based Pseudo-Tiling for Sparse Matrix Multiplication Accelerator Redefine the boundary between hardware and software for tiling in sparse matrix multiplication. Identify the limitations of the software-based tiling: manual execution, generation of several compression formats for each tile, and ineffectual accesses. Introduce a hardware-based pseudo-tiling, which performs the tiling process in hardware instead of software to overcome the aforementioned limitations of the software-based tiling. The hardware-based pseudo-tiling allows logical tiling of the original compressed matrix without generating a compression format for each tile and skips ineffectual accesses for input matrices. Accepted in MICRO 2023. Maximizing Partial Read Potential by Exploiting Compression and Channel-Level Parallelism Propose a new compression algorithm for applying partial read operations in SSD and a split module that can use partial read operation for uncompressed requests via channel-level parallelism in SSD. Published in TC 2022. Exploiting Narrow-Width Values to Reduce Data Traffic in Quantized Deep Neural Networks Propose a new compression algorithm based on the narrow-width value property in modern quantized DNN to reduce data traffic. 		

	Published in DATE 2022 and accepted in TC 2023	
	Exploiting Inter-Block Entropy to Improve the Compressibility of Blo	cks with Diverse Data
	 Leverage data patterns in software to overcome the limitations of compression techniques. 	previous intra- and inter-block
	 Discover the natural low-entropy among blocks and propose three opti artificial low-entropy among blocks. Based on these two low-entropy typ inter-block pattern compression technique. Propose hardware-based and profiling-based pattern selection methods f Propose a hybrid approach that leverages both intra- and inter-block compression technique in LIPC A 2022. 	mization techniques to generate bes, we propose an entropy-based for efficient pattern management. mpression techniques.
	 Published III FPCA 2022. Co. Design Compression Support Architecture and Code Compression. 	for Low Dower and Low Area
	 Leverage software-layer characteristics to optimize the code compress components 	sion technique and the hardware
	 Discover that certain bits within the 32-bit instruction encoding in RISC several characteristics of high-level languages, such as reusability and t Based on these observations, we re-organize the hardware components of architecture and design the instruction cache architecture to efficier compression technique. Published in TC 2020. 	C ISAs have high entropy due to the calling convention. of the code compression-support ntly support the proposed code
AWARDS &	National Scholarshin, KAIST	2017 – present
HONORS	 Summa Cum Laude, Hanvang University 	2017 present 2016
SKILLS	 Programmings: C/C++, Python, Verilog, Chisel Architecture Simulators and Tools: Gem5, ZSim, SST, Pin, Synopsys Design Compiler, Ramulator, DRAMSim2, DRAMPower, McPAT, CACTI System Software: Linux, Warewulf HPC Cluster, QEMU 	
TEACHING EXPERIENCE	 Teaching Assistant for Digital System and Lab, KAIST Teaching Assistant for Computer Architecture, KAIST Teaching Assistant for Computer Organization, KAIST Teaching Assistant for Computer Organization, KAIST Teaching Assistant for Computer Organization, KAIST 	Spring 2020 Spring 2019 Fall 2018 Spring 2018 Fall 2018